3.1870 \(\int \frac{1}{(a+\frac{b}{x^2})^2 x^6} \, dx\)

Optimal. Leaf size=57 \[ -\frac{3 \sqrt{a} \tan ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{b}}\right )}{2 b^{5/2}}+\frac{1}{2 b x \left (a x^2+b\right )}-\frac{3}{2 b^2 x} \]

[Out]

-3/(2*b^2*x) + 1/(2*b*x*(b + a*x^2)) - (3*Sqrt[a]*ArcTan[(Sqrt[a]*x)/Sqrt[b]])/(2*b^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0177912, antiderivative size = 57, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {263, 290, 325, 205} \[ -\frac{3 \sqrt{a} \tan ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{b}}\right )}{2 b^{5/2}}+\frac{1}{2 b x \left (a x^2+b\right )}-\frac{3}{2 b^2 x} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b/x^2)^2*x^6),x]

[Out]

-3/(2*b^2*x) + 1/(2*b*x*(b + a*x^2)) - (3*Sqrt[a]*ArcTan[(Sqrt[a]*x)/Sqrt[b]])/(2*b^(5/2))

Rule 263

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+\frac{b}{x^2}\right )^2 x^6} \, dx &=\int \frac{1}{x^2 \left (b+a x^2\right )^2} \, dx\\ &=\frac{1}{2 b x \left (b+a x^2\right )}+\frac{3 \int \frac{1}{x^2 \left (b+a x^2\right )} \, dx}{2 b}\\ &=-\frac{3}{2 b^2 x}+\frac{1}{2 b x \left (b+a x^2\right )}-\frac{(3 a) \int \frac{1}{b+a x^2} \, dx}{2 b^2}\\ &=-\frac{3}{2 b^2 x}+\frac{1}{2 b x \left (b+a x^2\right )}-\frac{3 \sqrt{a} \tan ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{b}}\right )}{2 b^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.036331, size = 54, normalized size = 0.95 \[ -\frac{a x}{2 b^2 \left (a x^2+b\right )}-\frac{3 \sqrt{a} \tan ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{b}}\right )}{2 b^{5/2}}-\frac{1}{b^2 x} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b/x^2)^2*x^6),x]

[Out]

-(1/(b^2*x)) - (a*x)/(2*b^2*(b + a*x^2)) - (3*Sqrt[a]*ArcTan[(Sqrt[a]*x)/Sqrt[b]])/(2*b^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.009, size = 46, normalized size = 0.8 \begin{align*} -{\frac{ax}{2\,{b}^{2} \left ( a{x}^{2}+b \right ) }}-{\frac{3\,a}{2\,{b}^{2}}\arctan \left ({ax{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}-{\frac{1}{{b}^{2}x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+1/x^2*b)^2/x^6,x)

[Out]

-1/2/b^2*a*x/(a*x^2+b)-3/2/b^2*a/(a*b)^(1/2)*arctan(a*x/(a*b)^(1/2))-1/b^2/x

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)^2/x^6,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.49645, size = 288, normalized size = 5.05 \begin{align*} \left [-\frac{6 \, a x^{2} - 3 \,{\left (a x^{3} + b x\right )} \sqrt{-\frac{a}{b}} \log \left (\frac{a x^{2} - 2 \, b x \sqrt{-\frac{a}{b}} - b}{a x^{2} + b}\right ) + 4 \, b}{4 \,{\left (a b^{2} x^{3} + b^{3} x\right )}}, -\frac{3 \, a x^{2} + 3 \,{\left (a x^{3} + b x\right )} \sqrt{\frac{a}{b}} \arctan \left (x \sqrt{\frac{a}{b}}\right ) + 2 \, b}{2 \,{\left (a b^{2} x^{3} + b^{3} x\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)^2/x^6,x, algorithm="fricas")

[Out]

[-1/4*(6*a*x^2 - 3*(a*x^3 + b*x)*sqrt(-a/b)*log((a*x^2 - 2*b*x*sqrt(-a/b) - b)/(a*x^2 + b)) + 4*b)/(a*b^2*x^3
+ b^3*x), -1/2*(3*a*x^2 + 3*(a*x^3 + b*x)*sqrt(a/b)*arctan(x*sqrt(a/b)) + 2*b)/(a*b^2*x^3 + b^3*x)]

________________________________________________________________________________________

Sympy [A]  time = 0.602729, size = 90, normalized size = 1.58 \begin{align*} \frac{3 \sqrt{- \frac{a}{b^{5}}} \log{\left (x - \frac{b^{3} \sqrt{- \frac{a}{b^{5}}}}{a} \right )}}{4} - \frac{3 \sqrt{- \frac{a}{b^{5}}} \log{\left (x + \frac{b^{3} \sqrt{- \frac{a}{b^{5}}}}{a} \right )}}{4} - \frac{3 a x^{2} + 2 b}{2 a b^{2} x^{3} + 2 b^{3} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x**2)**2/x**6,x)

[Out]

3*sqrt(-a/b**5)*log(x - b**3*sqrt(-a/b**5)/a)/4 - 3*sqrt(-a/b**5)*log(x + b**3*sqrt(-a/b**5)/a)/4 - (3*a*x**2
+ 2*b)/(2*a*b**2*x**3 + 2*b**3*x)

________________________________________________________________________________________

Giac [A]  time = 1.16279, size = 63, normalized size = 1.11 \begin{align*} -\frac{3 \, a \arctan \left (\frac{a x}{\sqrt{a b}}\right )}{2 \, \sqrt{a b} b^{2}} - \frac{3 \, a x^{2} + 2 \, b}{2 \,{\left (a x^{3} + b x\right )} b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)^2/x^6,x, algorithm="giac")

[Out]

-3/2*a*arctan(a*x/sqrt(a*b))/(sqrt(a*b)*b^2) - 1/2*(3*a*x^2 + 2*b)/((a*x^3 + b*x)*b^2)